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The theoretical basics of the analysis of voids in crystal structures by means of

Voronoi±Dirichlet polyhedra (VDP) and of the graph theory are stated.

Topological relations are considered between VDPs and atomic domains in a

crystal ®eld. These relations allow the separation of two non-intersecting

topological subspaces in a crystal structure, whose connectednesses are de®ned

by two ®nite `reduced' graphs. The ®rst, `direct', subspace includes the atoms

(VDP centres) and the network of interatomic bonds (VDP faces), the second,

`dual', one comprises the void centres (VDP vertices) and the system of channels

(VDP edges) between them. Computer methods of geometrical±topological

analysis of the `dual' subspace are developed and implemented within the

program package TOPOS. They are designed for automatically restoring the

system of channels, visualizing and sizing voids and void conglomerates,

dimensional analysis of continuous void systems, and comparative topological

analysis of `dual' subspaces for various substances. The methods of analysis of

`dual' and `direct' subspaces are noted to differ from each other only in some

details that allows the term `dual' crystal chemistry to be introduced. The

ef®ciency of the methods is shown with the analysis of compounds of different

chemical nature: simple substances, ionic structures, superionic conductors,

zeolites, clathrates, organic supramolecular complexes.

1. Introduction

Most methods of crystallochemical analysis traditionally

consider the crystal as a set of atoms represented by points,

spheres or ellipsoids joined by a system of bonds (in the case

of covalent or coordination compounds) or forming a packing

(if interatomic interactions are mainly non-direct as in the case

of ionic or molecular substances) (Vainshtein et al., 1983). As a

result, the crystal space becomes divided into two non-inter-

secting parts: the subspace of atoms whose topology is deter-

mined by a system of interatomic valent or non-valent

contacts, and the subspace of interatomic voids joined by a

system of channels. The crystallochemical study of a crystal

structure comes to the analysis of the ®rst subspace, as a rule,

while the subspace of voids is merely considered in special

cases when it associates with special properties of a substance,

such as ionic conductivity, absorption, molecular recognition,

capabilities to form intercalate compounds or to play the role

of a molecular sieve etc. Reliable results in assessing the

amount, positions and sizes of voids, and the topological

properties of the system of channels between them can usually

be obtained in the case of high-symmetry crystal structures

of simple chemical composition where voids have a regular

polyhedral atomic environment as in close packings or zeolites

(Wells, 1986). In other cases, one has to be satis®ed with semi-

quantitative or qualitative results and to judge the void

properties using indirect data (for instance, the substance's

capability to absorb ions or molecules of a given size or the

substance's anisotropy in ionic conductivity). Widespread

crystallochemical software packages provide no visualization

of void subspace and comprise no special tools to study voids.

Several algorithms and computer programs are known to

estimate the void sizes (Langlet et al., 1977; Alard & Wodak,

1991; Thomas, 1991; McArdle & Cunningham, 2000) but they

require using the systems of atomic and van der Waals radii

and are not widely exploited. At the same time, the role of

void analysis arises in modern crystal chemistry owing to

investigation of new classes of substances (ionic and molecular

sieves, supramolecular complexes, superionic conductors).

Therefore, this study is devoted to the development and

computer implementation of methods for the analysis of

`empty' space in crystal structures.

First of all, let us note that the aforementioned division of

crystal space into two parts is relative since it assumes an atom

to be a sphere with the size determined according to one of the

systems of crystallochemical radii. However, the most valid

crystal space pattern that conforms to the data of structural

experiment is a continuous distribution of electronic density

�(r) whose local minima can be considered to be void centres.

The most physically consistent interpretation of the �(r)

function, ®rst proposed by Bader (1990) for molecular

systems, at present ®nds more and more applications within



the framework of fast developing `electronic' crystal chemistry

(Tsirelson et al., 1986).

Bader (1990) de®ned the atomic domain in a crystal space

as a union of nucleus±attractor and its basin in the vector ®eld

of the electronic density gradient r�(r). He showed that the

global maximum and local minima of �(r) within the atomic

domain should be interpreted as the positions of atomic

nucleus and voids, respectively, whereas the saddle points

between the �(r) maxima and minima correspond to the

centres of chemical bonds and the channels between voids,

respectively. In crystal structures, the numbers of critical

points of different types are determined by the PoincareÂ±Hopf

formula (Zou & Bader, 1994):

nÿ b� rÿ c � 0; �1�

where n, b, r and c are the numbers of nuclei, bonds, channels

(rings) and voids (cages), respectively.

To use Bader's method, one needs the �(r) function

obtained from a quantum-chemical ab initio calculation or

from a precise structural experiment that essentially restricts

the applicability of the method in crystal chemistry. However,

Bader's ideas have evident methodological merits and can be

used in simpler analytical schemes.

Blatov & Serezhkin (2000) showed that the aforementioned

topological features of �(r) could be associated with com-

binatorial properties of the atomic Voronoi±Dirichlet poly-

hedron (VDP, Fig. 1) as is given in Table 1. According to Table

1, formula (1) is a special case of the Euler±PoincareÂ formula

for the closed odd-dimensional manifold (Pontryagin, 1986):

Pd
i�0

�ÿ1�i�i � 0; �2�

where d is the manifold dimensionality, �i is the number of

i-dimensional cages in the manifold. In our case, Voronoi±

Dirichlet partition is a three-dimensional (odd-dimensional)

manifold; VDPs, their faces, edges and vertices are three-,

two-, one- and zero-dimensional cages in the partition,

respectively; their numbers ordinarily correspond to n, b, r and

c values in (1). Thus, the crystal space partition by atomic

domains is homeomorphic to the Voronoi±Dirichlet partition,

and atomic domains are homeomorphic to atomic VDPs.

Following Table 1, we equate the void geometrical centre [a

local �(r) minimum] to a VDP vertex. Note that the void

centre de®ned like that does not always conform to the centre

of a physical cavity which can contain a set (conglomerate) of

VDP vertices (see x2.1).

Let us emphasize that a VDP element does not correspond

to a crystal structure topological element in all cases (Blatov &

Serezhkin, 2000) since an atomic domain hyperface does not

always contain a critical point (Bader, 1990). According to

Blatov & Serezhkin (2000), the correspondence exists if a

VDP element intersects the geometrical object given in the

second column of Table 1. For instance, if the segment joining

two atoms does not intersect corresponding VDP faces, these

atoms are `indirect' neighbours and the bond between them

seems to be lost (O'Keeffe, 1979). The same reasons can be

used for correspondences between VDP edges and vertices

(Table 1). Blatov & Serezhkin (2000) called a VDP element

major if it satis®es the condition of intersection, otherwise

such a VDP element is called minor and is to be taken into

account only in special cases.
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Figure 1
(a) Atomic VDP and (b) unit-cell contents for the f.c.c. lattice. Small balls
indicate the positions of void centres.

Table 1
Relations between VDP elements, �(r) features and topological elements of crystal structure.

VDP element Geometrical object that can intersect VDP element
Type of critical point
according to Bader (1990) �(r) feature

Topological element of
crystal structure

Central point None (3,ÿ3) Global maximum Atomic nucleus
Face Segment joining two atoms whose VDPs are incident to the

face
(3,ÿ1) Saddle point `Centre' of chemical bond

Edge Polygon con®ned with the atoms whose VDPs are incident to
the edge

(3, 1) Saddle point Centre of channel

Vertex Polyhedron whose vertices coincide with the atoms whose
VDPs are incident to the vertex

(3, 3) Local minimum Centre of void
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At the same time, topological similarity of atomic domains

and VDPs does not mean their geometrical similarity. In

particular, unlike VDP faces, the hyperfaces of atomic

domains are always curved. Besides, if a VDP has small faces

or edges, the corresponding combinatorial elements of an

atomic domain can be lost. In this case, the aforementioned

homeomorphism of two partitions is violated. In general, the

simple geometrical approach based on Voronoi±Dirichlet

partition gives a rougher crystal structure pattern than Bader's

method. However, as was mentioned above, �(r) cannot often

be determined by direct ab initio calculation or precise

experiment; in this case, the Voronoi±Dirichlet method

becomes a real possibility to investigate geometrical and

topological features of atomic domains. In particular, the

Voronoi±Dirichlet partition can successfully be used to solve a

number of problems concerning the atomic subspace, namely:

(i) search, determination of type and strength of interatomic

and intermolecular contacts (Blatov & Serezhkin, 2000);

(ii) estimation of relative sizes of atoms and molecules

(Fischer & Koch, 1979; Blatov & Serezhkin, 2000; Peresypkina

& Blatov, 2000a);

(iii) estimation of degree of distortion for atomic domains

and corresponding coordination polyhedra in a crystal ®eld

(Blatov & Serezhkin, 2000);

(iv) calculation of uniformity degree for atomic and mole-

cular packings (Blatov, 2001; Peresypkina & Blatov, 2002);

(v) analysis of topological properties of atomic and mole-

cular nets and packings (Peresypkina & Blatov, 2000b; Blatov,

2001).

However, the Voronoi±Dirichlet partition has not practi-

cally been used to investigate the subspace of voids, although

the principal possibility of such an application was earlier

mentioned (Wells, 1986). A number of algorithms to analyse

pores in non-periodic systems use elements of Voronoi±

Dirichlet partition (Medvedev, 2000). Table 1 shows that the

set of VDP centres with the topology determined by the

system of VDP faces unambiguously corresponds to the

atomic subspace. Similarly, the set of VDP vertices with the

topology determined by the system of VDP edges corresponds

to the void subspace. Thus, Figs. 2(a), (b) show that the set of

VDP vertices constructed without disordered Ag atoms

follows, as a whole, the motif of conductivity channels in the

crystal structure of superionic conductor RbAg4I5 (Geller,

1976). Either of the systems can be represented by a three-

dimensional graph (graph representation); the two graphs (the

graph of atoms and the graph of voids) interpenetrate but

never intersect each other. Let us emphasize that in the graph

representation a void is equated with its centre (VDP vertex)

just as the term `atom' denotes the point corresponding to a

�(r) maximum.

While the atomic subspace can be related to polyhedral

Voronoi±Dirichlet partition, the polyhedral partition where

the centres of polyhedra coincide with the centres of voids is

the Delone partition (Medvedev, 2000). Voronoi±Dirichlet

and Delone partitions are dual to each other and are poly-

hedral representations of atomic and void subspaces. It will be

shown below that the void subspace can also be represented

by a Voronoi±Dirichlet partition that has clearer physical

meaning.

Thus, topological structures of both subspaces are similar to

each other. This similarity allows us to suppose that the

methods of geometrical and topological analysis of the atomic

subspace (Blatov & Serezhkin, 2000) can substantially be used

to investigate the void subspace. Actually, the matter concerns

a `dual' crystal chemistry where similar methods are used to

analyse the sets of �(r) minima, not maxima. However, the

physical properties of both subspaces have a number of

important differences, therefore the methods of Blatov &

Serezhkin (2000) cannot be applied as is and require an

improvement that is considered below.

2. The methods of analysis of the void subspace

2.1. Generating the void subspace

The methods of the void subspace investigation are imple-

mented within the program package for multipurpose crys-

tallochemical analysis, TOPOS (Blatov et al., 2000). The

program Dirichlet (part of the TOPOS package) performs

searches for the void centres (VDP vertices). While

constructing the Voronoi±Dirichlet partition, all atoms of the

crystal structure are taken into account, as a rule; however,

any subset of basic atoms can also be considered. It can be

useful, for instance, to investigate voids in intercalates when

some voids are already occupied (in this case one needs to

forget the interstitial atoms), or to analyse supramolecular

receptors when ignoring hydrogen atoms can substantially

simplify the void map.

The void subspace differs from the atomic subspace in two

principal features, which should be taken into account when

restoring its connectedness:

Figure 2
(a) Migration channels for Ag+ ions and (b) the edge network for the
VDPs of Rb and I atoms in the crystal structure of the superionic
conductor RbAg4I5 (Geller, 1976).



(i) distances between the void centres can be arbitrarily

small;

(ii) voids are not a priori differentiable by type as atoms are

by chemical nature.

N void centres located close to each other represent an

N-conglomerate, which actually corresponds to the same

rather large cavity whose centre coincides with the conglom-

erate centroid. Such a situation is standard in the compounds

containing voluminous cavities decorated with many atoms

(Fig. 3). To some extent, this case is similar to atomic disorder.

One can differentiate voids by additional parameters, for

instance, by void size or by the nature of void atomic envir-

onment. In addition to the differentiation of major and minor

voids described above, the program Dirichlet implements one

more classi®cation variant to be considered below.

First of all, note that not all of the VDP vertices correspond

to real cavities in the crystal structure even in the case of the

1-conglomerate. In general, any four non-coplanar inter-

connected atoms correspond to a VDP vertex. If all or some of

these atoms are valently bonded and, hence, are close to each

other, the volume of the corresponding void would be small to

®t the size of an interstitial atom (metal hydrides are the single

exception). Obviously, if large cavities are only of interest and

there are long-distance non-valent contacts between neigh-

bouring atoms, such VDP vertices might be excluded from

consideration. Since six contacts between four atoms corre-

spond to each VDP vertex located in a general position, it is

convenient to introduce the rank of VDP vertex to be equal to

the number of non-valent contacts around it and to be varied

from 0 to 6. One can expect that the vertices of the highest

rank will conform to the largest cavities. For instance, in the

crystal structure of the zeolite Dodecasil 1H (Gerke & Gies,

1984), there are VDP vertices of ranks 3 and 6. A vertex of

rank 3 is incident to four VDPs of one Si and three O atoms

joined by three SiÐO valent bonds, and is located within an

SiO3 pyramid. A vertex of rank 6 is formed by the intersection

of four VDPs of oxygen atoms without valent contacts.

Forgetting the vertices of a lower rank results in a consecutive

simpli®cation of the channel map and in a clari®cation of large

cavities (Figs. 4a, b). Note that in all examples of this study all

VDP vertices are forgotten except the vertices of the highest

(for a given crystal structure) rank, however, all minor vertices

of the highest rank are taken into account together with major

ones.

An automated determination of void connectedness can be

performed by means of the program AutoCN from the

TOPOS package. This procedure is based on constructing a

`secondary' Voronoi±Dirichlet partition where void centres

are the centres of VDPs, however, while VDP constructing all

other voids and atoms are to be taken into account (Fig. 5,

Table 2). By analogy of the criterion of existence of inter-

atomic contact (Blatov & Serezhkin, 2000), a connecting

channel (Fig. 6) is assumed to exist between two voids if (i)

they are `direct' neighbours and (ii) the solid angle of the VDP

face separating void centres is more than a certain value

(normally 1.5% of the total solid angle 4� sr). In fact, this

value corresponds to the channel of the minimum section.
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Figure 3
(a) Polyhedral representation of voids in the sodium-free sublattice of the
crystal structure of NaAlSiO4 zeolite (Smith & Dowell, 1968) and
molecular VDPs for unconnected void N-conglomerates with the
following values of N, volume (AÊ 3) and G3: (b) 60, 799.0, 0.09466; (c)
33, 119.1, 0.07735; (d) 15, 23.8, 0.08151; (e) 3, 16.0, 0.08264; ( f ) 1, 9.5,
0.07875. The conglomerate (b) embraces the conglomerate (c).

Table 2
Results of VDP construction for the void A89 in the crystal structure of
the zeolite SSZ-42 (Chen et al., 1997) with the program Dirichlet.

In the program Dirichlet, the radius of sphere with the VDP volume (Rsd),
VDP sphericity parameter (G3, see x2.2.2) are speci®ed as the general VDP
parameters in addition to the VDP volume. In each line of the table, the name
of an atom or a void that is a neighbour of the void A89, its coordinates
(x, y, z), the distance (R) between the neighbour and A89, and solid angle (
)
of the VDP face are given.

VDP central point: A89 (0.500, 0.245, 0.000); Rsd = 1.196 AÊ ; VDP volume =
7.174 AÊ 3; G3 = 0.0860

Atom or void x y z R (AÊ ) 
 (%)

A90 0.480 0.120 ÿ0.046 1.739 10.52
A90 0.520 0.120 0.046 1.739 10.52
A53 0.571 0.338 ÿ0.008 1.817 9.82
A53 0.429 0.338 0.008 1.817 9.82
A55 0.409 0.309 ÿ0.054 1.853 10.01
A55 0.591 0.309 0.054 1.853 10.01
A49² 0.528 0.399 ÿ0.040 2.173 3.23
A49² 0.472 0.399 0.040 2.173 3.23
O1 0.563 0.143 ÿ0.172 2.345 5.91
O1 0.438 0.143 0.172 2.345 5.91
O2 0.424 0.186 ÿ0.265 2.345 5.87
O2 0.576 0.186 0.265 2.345 5.87
A84² 0.411 0.116 ÿ0.068 2.373 1.27
A84² 0.589 0.116 0.068 2.373 1.27
A82 0.519 0.285 ÿ0.355 2.834 3.37
A82 0.481 0.285 0.355 2.834 3.37

² `Indirect' neighbours.
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Note that such an approach is a simpler alternative to the

system of VDP edges as a topology on the void subspace, since

a clear criterion to neglect narrow channels is dif®cult to

introduce in the later variant.

If the void subspace is not simply connected (i.e. it contains

void conglomerates not connected to each other), one needs

to divide it to simply connected domains before analysing.

This operation corresponds to separating molecular (including

polymeric) groups when providing an ordinary crystal-

lochemical analysis of the atomic subspace. It can be

performed with the program ADS of the TOPOS package,

which simultaneously determines the dimensionality (0D, 1D,

2D or 3D) of simply connected domains and the orientation of

chain and layer (1D or 2D) conglomerates along crystal-

lographic directions (Figs. 7a, b). When the contacts between

voids in a conglomerate are substantially heterogeneous

(which can be ®xed by large lengths of the contacts or by small

solid angles of VDP faces), it is reasonable to make an addi-

tional division of the conglomerate into simpler fragments.

Such a problem is typical for continuous channels in zeolites

connecting voluminous cavities when the cavity properties

should be analysed (Fig. 8).

Visualization of voids in polyhedral and graph representa-

tions is implemented in the program IsoCryst of the new 32-bit

TOPOS 4.0, which was used to prepare all ®gures in this

paper.

Figure 6
Crystal structure fragment for h.c.p. Atoms and voids are shown by dark
and light balls, respectively. VDPs are constructed for tetrahedral voids.
The face corresponding to the connecting channel is ®lled.

Figure 4
Void conglomerates in the crystal structure of the zeolite Dodecasil 1H
(Gerke & Gies, 1984): (a) without removing voids; (b) removing all the
voids of rank less than 6.

Figure 5
VDP and the near environment of the void A89 in the crystal structure of
the zeolite SSZ-42 (Chen et al., 1997).

Figure 7
(a) Polyhedral representation of 1D chain void conglomerate in the
crystal structure of Rb0.28WO3 (LabbeÂ et al., 1978); (b) graph
representation of 2D layer void conglomerate in the crystal structure of
graphite.



2.2. Determination of void geometrical parameters

2.2.1. Void volume and area of channel section. The notion

of volume makes sense only for 0D conglomerates. When a

conglomerate consists of a single void (1-conglomerate), its

volume is equal to the volume of the void VDP constructed

with all neighbouring atoms, and its Rsd is equal to the void Rsd

(i.e. to the radius of a sphere of the void VDP volume). The

volume and Rsd of the 1-conglomerate correspond to the

atomic parameters whose correctness was shown by numerous

examples (Blatov & Serezhkin, 2000). Actually, the volume of

the 1-conglomerate is equal to the volume of an atom in a

given atomic environment, and Rsd of the 1-conglomerate is

equal to the atom radius. It is the void volume that can be

compared with the atomic volumes assumed to be equal to the

volumes of atomic VDPs in a given atomic environment. In

this case, the main problem hindering VDPs to be applied in

crystal chemistry disappears, the problem of choosing the

coef®cient of division of segments joining atoms by VDP faces

(Blatov & Serezhkin, 2000), because VDP construction both

of voids and of atoms is performed with the same coef®cient

(its value is taken to be equal to 0.5, which corresponds to the

VDP de®nition). Note that the coef®cient being equal to 0.5

was substantiated for comparative crystallochemical analysis

by Blatov & Serezhkin (2000).

However, one often deals with complex 0D N-conglomer-

ates (N > 1) owing to complex geometry of cavities. Volume

and Rsd of a complex N-conglomerate are equal to corre-

sponding parameters of molecular VDP (Fischer & Koch,

1979), which is in this case a set of N VDPs of voids belonging

to the conglomerate (Fig. 3). Evaluation of the size of a 0D

N-conglomerate can substantially help in solving the problems

of supramolecular chemistry, ®rstly, the problem of molecular

recognition when the substrate is a separate atom or a mole-

cule of any complexity. In short, a molecule could not ®t a

cavity if the VDP of the molecule is greater than the 0D

N-conglomerate corresponding to the cavity. We emphasize

that this condition is necessary but not suf®cient since a

receptor and a substrate must coincide with each other not

only by sizes but also by physical-chemical properties.

Although in most cases the necessary condition becomes

suf®cient to make conclusions about receptor properties.

Some examples are given below.

While analysing the possibility of a cavity to ®t the size of an

atom, the 0D N-conglomerate should be represented by its

centroid. Thus, Rsd values for N-conglomerates and their

centroids in the environment of oxygen atoms are given in

Table 3 for some crown ethers (Fig. 9) in comparison with Rsd

values of alkali atoms (M) in coordination polyhedra MOn
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Figure 8
Polyhedral representation of a channel in the crystal structure of the
zeolite Dodecasil 1H (Gerke & Gies, 1984).

Table 3
Rsd values for N-conglomerates and their centroids in the environment of
oxygen atoms for some crown ethers.

Rsd, AÊ

CSD reference code Crown ether N Conglomerate Centroid

Li complexes
CELHAC 14-Crown-4² 5 1.542 1.349
CEVNAS 12-Crown-4 7 1.478 1.386
JOJNOL³ 12-Crown-4 9 1.639 1.408

12-Crown-4 7 1.535 1.437
KEVRAE 12-Crown-4 7 1.451 1.385
KOCXUV 14-Crown-4² 2 1.361 1.352
POWZOQ 14-Crown-4² 2 1.398 1.365
XACKUH 10-Crown-3² 4 1.409 1.313
Mean value 1.48 (9) 1.37 (4)
Rsd of Li atoms§ 1.38 (1)

Na complexes
FOPPOP 12-Crown-4 7 1.503 1.458
JEGFIK 14-Crown-4² 5 1.624 1.529
JUNGAA 24-Crown-8² 3 1.561 1.539
HOJFAN 12-Crown-4 7 1.490 1.444
HOWGOP 12-Crown-4² 7 1.476 1.439
TEGCEN 12-Crown-4 8 1.494 1.446
YATBIE³ 12-Crown-4 7 1.506 1.456

12-Crown-4 7 1.521 1.462
Mean value 1.52 (5) 1.47 (4)
Rsd of Na atoms§ 1.54 (1)

K complexes
CALYOD 15-Crown-5² 13 1.904 1.666
CIRDUC 30-Crown-10² 13 1.938 1.685
HOFGOE 12-Crown-4 8 1.952 1.774
FIWVUC 15-Crown-5² 12 1.809 1.646
LAWFIY 15-Crown-5² 13 1.849 1.648
NAYKON 15-Crown-5 14 1.840 1.651
YEKLUV³ 12-Crown-4 7 1.779 1.682

12-Crown-4 9 1.853 1.675
Mean value 1.87 (6) 1.68 (4)
Rsd of K atoms§ 1.704 (3)

Rb complexes
CAXSUP 18-Crown-6 10 1.942 1.744
FOJJAP 15-Crown-5² 13 1.838 1.700
GOKXUZ 18-Crown-6² 20 2.113 1.821
HEWNAY 15-Crown-5 8 1.850 1.726
PAQPEC 18-Crown-6 10 1.864 1.755
YISTID 15-Crown-5² 14 1.897 1.668
Mean value 1.9 (1) 1.74 (5)
Rsd of Rb atoms§ 1.775 (5)

Cs complexes
CENQIV 18-Crown-6 15 2.279 1.911
DOSKIF 15-Crown-5² 15 2.421 1.868
DUBCIM 18-Crown-6 18 2.215 1.874
FUJCUI 18-Crown-6 19 2.305 1.843
SILREK01 15-Crown-5 13 2.048 1.906
TAGFEM 15-Crown-5 16 2.250 1.820
Mean value 2.3 (1) 1.87 (4)
Rsd of Cs atoms§ 1.88 (1)

² Substituted crown ether. ³ This compound contains two non-equivalent crown ether
molecules. § According to Blatov et al. (1998).
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(Blatov et al., 1998). It is clear that Rsd values for the

conglomerate centroids better ®t the typical radii of M atoms.

The next example is a 14-conglomerate with volume equal

to 51.5 AÊ 3 and Rsd = 2.31 AÊ in the molecule of octaanisyl

cavitand (Trueblood et al., 1995; Fig. 10). This cavity volume is

insuf®cient to ®t practically all organic molecules, except

probably methane with the volume '50 AÊ 3. For instance,

dichloromethane and ethanol molecules are solvates in the

crystal structures of FUDSIG10, FUDSOM10 and

FUDSUS10 (Trueblood et al., 1995) and are not coordinated

by the cavitand. Their volumes calculated using crystal struc-

ture data of DCLMET10 and ETANOL are equal to 82.1 and

75.5 AÊ 3, respectively, which substantially exceeds the absorp-

tive capacity of the cavitand. However, the cavity is suf®cient

to enclose alkali atoms; thus, according to Blatov et al. (1998),

the VDP volume for caesium ions in the oxygen environment

is equal to 27.7 AÊ 3, Rsd = 1.88 AÊ . Really, in the crystal structure

FUDSUS10, a caesium ion occupies the cavity of the octa-

anisyl molecule and coordinates in addition two perchlorate

ions, therefore the cavity volume decreases down to the value

required; the VDP volume for the caesium ion surrounded by

ten oxygen atoms (eight of them belong to the cavitand and

two oxygen atoms belong to two perchlorate ions) is equal to

25.9 AÊ 3.

Let us consider one more example illustrating the features

of the analysis of 0D N-conglomerates. For the crystal struc-

ture of the clathrate containing CCl4 molecules and Xe atoms

(McMullan & Kvick, 1990), the calculation without interstitial

atoms and molecules gives three void conglomerates (Fig. 11);

the centres of A1 and A2 conglomerates coincide with the

positions of Xe atoms and centroids of CCl4 molecules,

respectively, while the voids A3 correspond to the channels

joining A2 conglomerates and show the

directions of CÐCl bonds forming a

tetrahedral arrangement for each A2

conglomerate. The volumes 36.5, 51.2

and 25.0 AÊ 3 were obtained for A1, A2

and A3 conglomerates, respectively.

The volume of a tetrahedral molecule

to ®t the cavity A2 can be evaluated as

51.2 + 4 � 25 = 151.2 AÊ 3. The volumes

of Xe atoms and CCl4 molecules are

equal to 57.6 and 145 AÊ 3, respectively,

for the crystalline state. Therefore the

cavity A1 is insuf®cient in size to

enclose Xe atoms, which justi®es its

®lling only by 21±22% (McMullan &

Kvick, 1990). Note that the Xe atoms

encapsulated into the crystal structure

of zeolite A (Heo et al., 1999) conform

to the crystalline xenon by volume.

While analysing 1D, 2D or 3D

conglomerates, it is important to

evaluate the section areas or radii of

the channels between cavities. If a

channel is represented by N voids

separated by approximately equal

distances from each other (i.e. they

group into no additional conglomer-

ates), its maximum, minimum and

average section areas (Smax, Smin, hSi)
can be calculated as follows:

S � �R2
sd; �3�

where Rsd corresponds to maximum,

minimum and average Rsd values for

the set of N void VDPs, respectively,

and is assumed to be equal to the

channel radius. To assess the shape and

size of the channel more precisely, one

can calculate VDPs and Rsd values for

several additional equidistant points

placed on the channel line (the channel

Figure 9
VDPs of void conglomerates and of alkali atoms in the crystal structures of: (a) (6,7-dimethyl-benzo-
14-crown-4-O-1-,O-4-,O-8-,O-11)-nitrato-O,O0-lithium [CELHAC]; (b) bis[bis(benzo-15-crown-5)-
potassium]hexaiododimercurate(II) [CALYOD]; (c) (�2-18-crown-6)-bis(18-crown-6)-dicaesium-
decakis(�3-iodo)-bis(acetonitrile)-octacopper(I) [CENQIV]. [Reference codes for compounds in
the Cambridge Structural Database (CSD, version 5.21, 2001) are given in brackets.]



scan method). Thus, the zeolite Dodecasil 1H (Fig. 8) has

Smax = 24.81; Smin = 8.39; hSi = 16.04 AÊ 2 according to Table 4.

2.2.2. Shape and degree of geometrical distortion for a
cavity. The VDP for an N-conglomerate immediately re¯ects

the shape of the corresponding cavity (Fig. 3). To assess the

degree of geometrical distortion of a 1-conglomerate, it is

suitable to use the VDP normalized dimensionless second

moment of inertia (G3) to be generally calculated as follows:

G3 � 1
3

R
VDP

R2 dVVDP

�
V

5=3
VDP; �4�

where VVDP is the VDP volume, R is the distance between the

void centre and a point inside the VDP. As is well known

(Conway & Sloane, 1988), the G3 value can be calculated for a

solid simplicial dissection:

G3 � 1
3

P
i

ViIi

�
V

5=3
VDP; �5�

where summation is provided over all simplexes, Vi is the

volume of an ith simplex, Ii is the normalized second moment

of inertia for this simplex relative to the VDP centre:

I � 4
5 k �vk 2 � 1

20

P3

j�0

kvj k 2: �6�

In (6), the summation is provided over all simplex vertices,

kvj k is the norm of the radius vector for a jth simplex vertex,

k �vk is the norm of the radius vector for the simplex centroid

relative to the VDP centre. It is the formulae (5) and (6) that

are used in the TOPOS package to calculate G3 values. Blatov

& Serezhkin (2000), Blatov (2001) and Peresypkina & Blatov

(2002) have shown that the G3 parameter allows one to

evaluate the degree of distortion for a polyhedral atomic

domain in comparison with a sphere or regular polyhedra

(Table 5) in more detail than other known criteria do.

Formula (5) can also be used to calculate the G3 value for an

N-conglomerate represented by its molecular VDP. In this

case, the summation is provided over all simplexes of all void

VDPs in the conglomerate, while the conglomerate centroid is

taken as a coordinate origin. Some typical void conglomerates

are given in Fig. 3 together with corresponding G3 values.

2.3. Topological properties of channel system and of void
arrangement

Blatov (2000), Peresypkina & Blatov (2000b) and Blatov

(2001) have developed an approach to analyse three-dimen-

sional periodic nets based on their representation as ®nite

`reduced' graphs. A `reduced' graph can characterize the

atomic subspace in two different ways. In the ®rst one, the

graph of an atomic net is constructed whose edges correspond

to interatomic bonds; it conforms to the ball-and-stick repre-

sentation of the crystal structure. The second variant comes

from restoring the connectedness of an atomic multilattice

whose atoms do not necessarily contact each other in the

reference crystal structure. `Contacts' between such atoms are

determined with the Voronoi±Dirichlet partition for the

multilattice without taking into account other atoms. The

`reduced' graph constructed in such a way is called the

`packing' graph (Blatov, 2001) since it speci®es the topology

for an atomic packing within the crystal structure as a whole.

The principles of topological analysis of `reduced' and

`packing' graphs are the same and are used for calculating

coordination sequences1 for all basic atoms in the graph.

Comparing the sets of such sequences opens up great possi-

bilities in automation of the procedure of crystallochemical

classi®cation (Blatov, 2000). Besides, comparing coordination

sequences for `packing' graphs with reference sequences, one

can automatically identify any packings, for instance, close or

b.c.c. packings (Blatov, 2001). It is very important to assess the

uniformity of the spatial arrangement for the `packing' graph

vertices using the root-mean-square error for the corre-

sponding three-dimensional space quantizer:

hG3i � 1
3

�1=Z�PZ
i�1

R
VDP�i� R

2 dVVDP�i�

�1=Z�PZ
i�1 VVDP�i�

� 	5=3
; �7�

where Z is the number of basic atoms in the graph. Comparing

(4) and (7), one can note that the hG3i parameter is in fact the

measure of averaged distortion for the domains of all basic

atoms in the packing and can be calculated with formulae (5)

and (6). According to Blatov (2001), the least distorted (the

most uniform) lattice has the minimum hG3i value among the

lattices with a given topology. This criterion also allows one to

®nd the most uniform lattice among geometrically undistorted

but topologically different lattices. The b.c.c. lattice with hG3i =
0.0785433 . . . is the most uniform among three-dimensional
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Table 5
G3 values for some polyhedra and sphere.

Polyhedron G3 Polyhedron G3

Tetrahedron 0.10400 Rhombododecahedron 0.07875
Cube 0.08333 Truncated octahedron 0.07854
Octahedron 0.08255 Dodecahedron 0.07813
Hexagonal prism 0.08122 Icosahedron 0.07782
Sphere 0.07697

Table 4
The results of assessing channel size obtained by the channel scan method
for the zeolite Dodecasil 1H.

Point coordinates

x y z Rsd (AÊ ) S (AÊ 2)

1.0000 0.0000 0.5 2.810 24.81
0.9375 0.0625 0.5 2.742 23.62
0.8750 0.1250 0.5 2.515 19.87
0.8125 0.1875 0.5 2.139 14.37
0.7500 0.2500 0.5 2.036 13.02
0.6875 0.3125 0.5 2.150 14.52
0.6250 0.3750 0.5 2.124 14.17
0.5625 0.4375 0.5 1.919 11.57
0.5 0.5 0.5 1.634 8.39

1 The oordination sequence (Brunner & Laves, 1971) is a set of integers {Nk}
where Nk is the number of atoms in a kth coordination sphere of a basic atom
in the graph.
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lattices (Conway & Sloane, 1988). In the case of ionic

compounds, it is the sublattice uniformity that is the important

criterion of the sublattice structure-forming role, i.e. the

sublattice role in the formation of a rigid three-dimensional

periodic framework (Blatov, 2001).

The methodology of topological analysis described above

can easily be extended to the void subspace. In this case, the

analog of the graph of an atomic net speci®es the topology of

the channel system, and the analog of the `packing' graph

Table 6
Coordination sequences for the voids in the h.c.p. and in alkali peroxides.

Compound or packing Atom or void N1 N2 N3 N4 N5

H.c.p. Tetrahedral void 7 21 49 83 133
Octahedral void 6 18 50 72 134

Li2O2 Li1, Li2 6 18 38 86 126
Li3 6 24 50 84 150
O 7 21 49 88 133

Na2O2 Na1 6 20 46 86 130
Na2 6 22 48 84 138
O1 7 22 47 82 133
O2 7 22 50 88 133

K2O2 K 6 20 42 76 114
O 7 20 44 74 117

Rb2O2(Cs2O2) Rb (Cs) 6 20 40 72 110
O 7 19 42 71 111

Table 7
Coordinates and types of voids in the packing of oxygen atoms in the
crystal structure of low-temperature magnetite.

Void x y z Void type

A1 0.5 0.0 0.5 Octahedral
A2² 0.0 0.0 0.5 Octahedral
A3 0.25 0.0 0.625 Tetrahedral
A4 0.5 0.75 0.3787 Tetrahedral
A5² 0.25 0.75 0.25 Octahedral
A6² 0.5 0.75 0.625 Tetrahedral
A7 0.75 0.75 0.75 Octahedral
A8 0.0 0.75 0.6297 Tetrahedral
A9 0.0 0.75 0.3785 Tetrahedral

² Coincides with Fe atom.

Figure 11
Polyhedral cavities and void centres in the crystal structure of clathrate
(McMullan & Kvick, 1990). The VDP of the void A1 is shown.

Figure 10
Polyhedral representation of 14-conglomerate in the octaanisyl cavitand
(Trueblood et al., 1995).

Figure 12
(a) Void conglomerates, the results of (b) their contraction and (c)
removing all the voids of the rank less than six in the crystal structure of
the zeolite SSZ-42 (Chen et al., 1997). Perspective projections are given
along (001).



speci®es the topology of a set of voids not connected with each

other (for instance, voids of different shape in close packings).

To construct such graph analogs, one needs to make only one

additional operation after restoring connectedness of the void

subspace: to contract2 each void conglomerate into the same

graph vertex. Figs. 12(a)±(c) show the result of such a trans-

formation for the crystal structure of the zeolite SSZ-42 (Chen

et al., 1997). Thus, the following two important problems can

be resolved:

(i) comparing the topologies of the systems of cavities and

channels in two different compounds or the topology of the

system of cavities and channels in one crystal structure with

the topology of an atomic net in another crystal structure;

(ii) determination of topological properties for a spatial

arrangement of cavities.

All calculations concerning construction and analysis of the

graphs of nets and packings can be performed with the

program IsoTest, part of the TOPOS package (Blatov, 2000).

Let us consider as an example of solving the ®rst problem

the topology of the system of channels in close packings (h.c.p.

and f.c.c.) in comparison with the topologies of atomic nets in

binary inorganic compounds using the database of their

topological types (Blatov & Zakutkin, 2002). Analysis of

coordination sequences shows the system of tetrahedral and

octahedral voids and channels joining them in the f.c.c.

packing to be topologically similar to the system of atoms and

interatomic bonds in the Mg2Ge structure type (Grosch &

Range, 1996): Mg and Ge atoms are topologically equivalent

to tetrahedral and octahedral voids, respectively, and have

N1±5 = {10, 34, 82, 142, 218} and {8, 36, 78, 140, 230}. At the

same time, there are no complete topological analogs for the

system of voids and channels in the h.c.p. packing among

binary compounds though alkali peroxides have similar

coordination sequences in the ®rst coordination spheres

(Table 6).

The example of solving the second problem is the deter-

mination of topology and uniformity for the sublattices of

metal atoms at various packings of voids in the f.c.c. packing of

oxygen atoms. Consider the low-symmetric

(low-temperature) phase of magnetite

Fe3O4 [spinel family, space group Imma

(Hamilton, 1958)]. The calculation with the

program Dirichlet gives nine non-equivalent

voids in the oxygen packing; ®ve and four

out of them are tetrahedral and octahedral,

respectively; three voids coincide with Fe

atoms (Table 7). The topological properties

and hG3i values for the `packing' graphs for

all possible packings of voids (511 variants)

are determined with the program IsoTest.

Each combination of voids (for instance,

A1 + A4 + A9) means physically an atomic

arrangement over the oxygen packing (in

this case over the voids A1, A4 and A9).

When analysing the hG3i value, one can ®nd the most uniform

packings of voids. Since in this case voids have to be occupied

only by cations, it is the most uniform packing that should

conform to the most stable crystal structures. The calculations

performed with the IsoTest program show hG3i values to be

varied within the range 0.07855±0.12543. The most uniform

packings (hG3i < 0.080, Table 8) are arranged into three

topological families according to the values of the ®rst three

members of coordination sequences N1±3 = {N1, N2, N3}. When

comparing N1±3 values with the reference values typical for

well known packings, one can conclude that the families I, II

and III have the topologies of b.c.c., f.c.c. and Laves phase

(MgCu2), respectively. Moreover, when arranging cations (M)

over the voids of the families I, II or III, the oxides MO2, MO

and M3O4 are obtained with the topologies of SiO2 (cristo-

balite), NaCl and spinel, respectively. Obviously, different void

packings within each topological family yield the same oxide.

Thus, in the case of spinel, the most uniform arrangement of M

cations over the voids of the f.c.c. packing is realized, which is

possible at the ratio M :O = 3:4.

3. Conclusions

The results obtained show that the methods of crystal-

lochemical analysis of the atomic subspace can easily be

extended to the void subspace and give additional information

about the crystal structure. Dual features of the Voronoi±

Dirichlet and Delone partitions emphasize that this informa-

tion is contained in the standard crystallographic data

obtained as a result of structural experiment but it can be

extracted merely by constructing these partitions. Such a

conclusion reinforces the role of VDP as an object and tool of

crystallochemical analysis that allows one to characterize any

newly investigated crystal structure with two complementary

methods.
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dation for Basic Research (project No. 01±07-90092).
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Table 8
The most uniform arrangements of atoms over the voids of oxygen packing in the crystal
structure of low-temperature magnetite.

Topological
family Arrangement hG3i Void name N1 N2 N3

I A6 + A9 0.078551 A6, A9 14 50 110
A4 + A8 0.078563 A4, A8 14 50 110

II A1 + A2 + A5 + A7 0.078746 A1, A2, A5, A7 12 42 92
III A2 + A5 + A6 0.079339 A2, A5 12 50 110

A6 16 52 130
A1 + A7 + A9 0.079346 A1, A7 12 50 110

A9 16 52 130
A2 + A4 + A7 0.079347 A2, A7 12 50 110

A4 16 52 130
A1 + A5 + A8 0.079350 A1, A5 12 50 110

A8 16 52 130

2 Contracting a graph vertex means its removal and closing together the free
ends of the edges to be incident to this vertex (Blatov & Serezhkin, 2000).
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